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Abstract

This is a sketchy written version of my lectures given at the workshop DARKMOD.
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1 Introduction

So far, general relativity (GR) works extremely well:

• very precisely tested in the solar system, in binary pulsars; now, direct observations of
gravitational waves.

• on cosmological scales, the ΛCDM model, with gravity described by general relativity
supplemented by a cosmological constant, works rather well, despite a few tensions
(which could simply be due to systematic effects).

So, why explore alternatives to GR ? The main motivations are often the following:

1. The tiny value of the cosmological constant required in the ΛCDM model is difficult to
understand from a theoretical point of view. Instead, the observed acceleration could be
the consequence of a modification of gravitation laws on cosmological scales.

2. Use modified gravity models as a way to parametrize deviations from GR and therefore
to provide quantitative tests of GR.

How to modify gravity ?

1. Extra fields: scalar(s), vectors or tensors. Most models are based on a single scalar field.

2. Extra dimensions: for example braneworld scenarios (Randall-Sundrum, Dvali-Gabadadze-
Poratti).

3. Breaking of diffeomorphism invariance: for example massive gravity, massive bimetric
gravity, Lorentz-violating theories (Einstein-aether, Horava gravity).

What are the main requirements when trying to modify gravity ?

1. Internal consistency of the theory: in particular, no ghost, no gradient instability, no
tachyonic instability with short time scale.

2. Compatibility with all present observational constraints: laboratory experiments, solar
system tests, astrophysical & cosmological observations.

This is potentially problematic for theories that involve extra fields, which produce new
interactions that must be sufficiently suppressed on well explored scales. Hence the
importance of a screening mechanism in the recently studied models.

These lectures present a limited number of models, focussing on the main models that have
been investigated in the literature. Massive gravity will not be discussed, as a separate series
of lectures is devoted to it. Many more details can be found in a number of recent reviews on
modified gravity, e.g. [11],[19] and[2].
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2 Traditional scalar-tensor theories

[For a review with the main relevant references, see e.g. [8].]
One can consider a large class of scalar-tensor theories of the form

S =
1

16πG

∫
d4x
√
−g [F (φ)R− Z(φ)gµν∂µφ∂νφ− U(φ)] + Sm [ψm, gµν ] , (1)

where Sm is the action for the matter fields, denoted by ψm. The above action can also be
written, up to a redefinition of the scalar field, in the form

S =
1

16πG

∫
d4x
√
−g
[
χR− ω(χ)

χ
gµν∂µχ∂νχ−W (χ)

]
+ Sm [ψm, gµν ] . (2)

A particular subset of theories are the well-known Jordan-Brans-Dicke theories, which can be
written in the form

S =
1

16πG

∫
d4x
√
−g

[
φR− ωBD

φ
(∂φ)2

]
+

∫
d4x
√
−gLm[ψm; gµν ] , (3)

where ωBD is constant.

2.1 Jordan versus Einstein frame

In the above actions, matter is minimally coupled to the metric gµν , which is called the Jordan
frame metric. An equivalent formulation of the theory is given in the Einstein frame, where
the kinetic term for the metric is of the Einstein-Hilbert form. This can be done by a conformal
transformation of the metric and a redefinition of the scalar field so that the action reads

S =

∫
d4x
√
−g∗

[
M2

P

2
R∗ −

1

2
gµν∗ ∂µφ∗ ∂νφ∗ − V (φ∗)

]
+ Sm

[
ψm, A

2(φ∗)g
∗
µν

]
, (4)

written in terms of the Einstein frame metric g∗µν . We have introduced the reduced Planck

mass MP ≡ 1/
√

8πG. It is also convenient to introduce the dimensionless scalar field

ϕ∗ ≡
φ∗
MP

. (5)

The price to pay for recovering the standard Einstein-Hilbert term is that matter is no
longer minimally coupled to the metric. There is instead an explicit coupling to the scalar
field in the matter action. The Jordan and Einstein formulations of scalar-tensor theories are
equivalent, but, depending on the specific question one is interested in, one or the other can
be more convenient.

2.1.1 Conformal transformation

Let us compute explicitly the conformal transformation to go from the Einstein frame action
(4) to the Jordan frame action (1). Let us first recall that for a metric g∗ab conformally related
to the metric gab,

g∗ab = Ω2gab , (6)
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the Ricci scalar is given by

R∗ = gab∗ R̃
∗
ab = Ω−2

[
R− 6

∇a∇aΩ

Ω

]
, (7)

and we thus have∫
d4x
√
−g∗R∗ =

∫
d4x
√
−g
[
Ω2R− 6Ω∇a∇aΩ

]
=

∫
d4x
√
−g
[
Ω2R + 6∇aΩ∇aΩ

]
, (8)

where the second equality follows from an integration by parts. By comparing (1) and (4)
with the above relation, one finds that the conformal factor between the two metrics must be

Ω2 = A−2 = F (φ) . (9)

Consequently

6∇aΩ∇aΩ =
3

2F

(
dF

dφ

)2

(∂φ)2 , (10)

and
√
−g∗gµν∗ ∂µφ∗∂νφ∗ =

√
−gM2

PF (φ)

(
dϕ∗
dφ

)2

gµν∂µφ∂νφ . (11)

The identification of the two actions (1) and (4) thus yields the relations(
dϕ∗
dφ

)2

=
3

2F 2

(
dF

dφ

)2

+
Z

F
(12)

and

V (ϕ∗) =
U(φ)

2F 2(φ)
. (13)

2.1.2 Energy-momentum tensor (Einstein frame)

Let us now work in the Einstein frame. For convenience, we drop the symbol ∗ that indicated
Einstein frame quantities and we denote the Jordan metric as g̃µν , so that the Einstein frame
action (4) now reads

S =

∫
d4x
√
−g
[
M2

P

2
R− 1

2
gµν∂µφ ∂νφ− V (φ)

]
+ Sm

[
ψm, g̃µν = A2(φ)gµν

]
. (14)

The matter energy-momentum tensor defined in the Einstein frame is not conserved because
of the direct coupling to the scalar field, and verifies the relation

∇µT
µ
ν =

Aφ
A
T ∇νφ , (15)

where Tµν is the Einstein-frame energy-momentum tensor defined by

T µν ≡ 2√
−g

δLm
δgµν

, [Sm =

∫
d4xLm] , (16)

and T = gµνTµν its trace.
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This result can be shown for example by starting from the conservation of the Jordan
frame energy-momentum tensor

∇̃µT̃
µ
ν = 0 , (17)

(where we use here a tilde to denote all Jordan frame quantities) and by reexpressing the
covariant derivative associated with g̃µν in terms of the covariant derivative associated with
gµν . Note that all indices for Jordan frame tensors are lowered or raised by the Jordan metric
g̃µν = A2gµν and its inverse. The tensor T̃ µν is defined as in (16), but with tilde quantities, so
that

T µν = A6 T̃ µν , T µν = A4 T̃ µν , Tµν = A2 T̃µν . (18)

2.1.3 Equation of motion for the scalar field (Einstein frame)

The variation (with respect to φ) of the total action (14) gives

δS =

∫
d4x
√
−g
[
∇µ∇µφ−

dV

dφ

]
δφ+ δSm , (19)

with

δSm =

∫
d4x

δLm
δg̃µν

∂g̃µν
∂φ

δφ =

∫
d4x

δLm
δgµν

(
2
Aφ
A

)
gµνδφ . (20)

We thus get

∇µ∇µφ−
dV

dφ
+
Aφ
A
T = 0 . (21)

2.2 Gravitational equations (Jordan frame)

We now go back to the Jordan frame and compute the scalar and gravitational fields generated
by a static spherical body.

2.2.1 Jordan-Brans-Dicke theories

For simplicity, we restrict our calculation to the Jordan-Brans-Dicke theories, but it is straight-
forward to extend it to the general case (1), briefly discussed in the next subsection.

Let us consider the perturbed metric

ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)δijdx
idxj , (22)

due to the presence of a (static spherically symmetric) non-relativistic source T 0
0 = −ρ, which

is treated perturbatively. The scalar field φ is also perturbed:

φ = 1 + δφ , (23)

where we have taken the background value φ̄ = 1 (which is always possible up to a rescaling
of G in the action).

Then the linearized equations of motion for the metric yield

∇2Ψ = 4πGρ+
1

2
∇2δφ , Ψ− Φ = δφ , (24)
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while the equation of motion for the scalar field gives

(3 + 2ωBD)∇2δφ = −8πGρ . (25)

Combining these equations leads to

∇2Φ = 4πGµρ , Ψ = ηΦ , (26)

with

µ =
4 + 2ωBD

3 + 2ωBD

, η =
1 + ωBD

2 + ωBD

. (27)

When ωBD tends to ∞, one recovers GR.
The effective Newton’s constant is given by Geff = Gµ and η corresponds to the PPN

parameter γPPN. The most stringent constraint on ωBD comes from the Shapiro delay is [3]

ωBD > 4× 104 . (28)

2.2.2 General case

In the general case of theories (1), one can envisage two situations:

• If the scalar field has a potential, in constrast with the BD case, and if the effective mass
is very large, then the scalar interaction is effectively suppressed on distances larger than
the inverse mass, even if the scalar field is strongly coupled to matter.

• If, by contrast, the scalar field is very light, then its coupling to matter, characterized
by the parameter

ξ ≡ d lnA

dϕ
, (29)

must be very weak in order to satisfy the current observational constraints. Indeed the
PPN parameter γPPN is given by

γPPN − 1 = − 4ξ2

1 + 2ξ2
= −

F 2
φ

ZF + 2F 2
φ

. (30)

As we will see in the next section, one can use the presence of a potential for the scalar field
to suppress the effective coupling of extended objects to the scalar field.

3 Chameleon models and screening mechanism

[See e.g. [12] and [4] for recent reviews]
Chameleon theories [15, 14] are based on a screening mechanism such that the scalar

coupling of extended objects is effectively suppressed. This is due to an effective scalar field
potential that depends on the matter density, resulting in a high effective scalar mass in dense
environments.

Let us consider a scalar-tensor theory, described in the Einstein frame by the action

S =

∫
d4x
√
−g
[
M2

P

2
R− 1

2
gµν∂µφ ∂νφ− V (φ)

]
+ Sm

[
ψm, g̃µν = A2(φ)gµν

]
. (31)

and some non-relativistic matter with energy density ρ (defined in the Einstein frame).
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3.1 Effective potential

According to (21), the equation of motion for the scalar field reads

∇µ∇µφ =
dV

dφ
+
Aφ
A
ρ, (32)

since T = −ρ for non-relativistic matter. As we saw earlier, the Einstein frame energy-
momentum tensor is not conserved and we will work instead with the density ρ̂ ≡ ρ/A which
is conserved in the Einstein frame.

The scalar equation of motion then reads

∇µ∇µφ =
dV

dφ
+ Aφρ̂ =

dVeff

dφ
, (33)

with

Veff ' V (φ) + ξ
φ

Mp

ρ̂ , (34)

given an expansion in φ/Mp � 1.
For illustration, let us consider a potential of the form

V (φ) = V0 +
µ4+n

φn
(35)

Then Veff has a minimum for

φmin =

(
nMpµ

4+n

ξρ̂

)1/(n+1)

, (36)

and the effective (square) mass at this minimum is given by

m2
eff =

(
d2Veff

dφ2

)
min

= n(n+ 1)
µ4+n

φn+2
min

= n(n+ 1)µ4+n

(
ξρ̂

nMpµ4+n

)(n+2)/(n+1)

. (37)

This effective mass increases with the mass density: m2
eff ∼ ρ̂(n+2)/(n+1). Therefore, the scalar

interaction can be suppressed in high density environments.

3.2 Scalar field profile

Let us now solve the static scalar equation for a spherical object of radius R with, for simplicity,
constant density:

∆ϕ =
1

r2

d

dr

(
r2dϕ

dr

)
= 8πGξρ+

dV

dϕ
, ϕ ≡ φ/Mp . (38)

One can distinguish three domains:

• Region 0 < r < rs

The scalar field is at the minimum of the effective potential (inside the object):

ϕ = ϕc (39)
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Figure 1: Effective potential at low and high densities [Plot taken from [13]].

• Region rs < r < R

The scalar field profile evolves, driven by the right hand side which is dominated by its
first term:

1

r2

d

dr

(
r2dϕ

dr

)
' 8πGξρ . (40)

This is straightforward to integrate, giving

ϕ =
4πG

3
ξρr2 +

A

r
+B (41)

where A and B are two integration constants. These constants can be determined by
matching ϕ and dϕ/dr at r = rs, which yields

ϕ =
4πG

3
ξρ

(
r2 + 2

r3
s

r
− 3r2

s

)
+ ϕc (42)

• Region r > R

Outside the object, there is a new mimimum ϕ and new, much smaller, effective mass
m∞, associated with the (much lower) cosmological density. The scalar field profile is
then of the Yukawa type:

ϕ = −C
r
e−m∞(r−R) + ϕ∞ , (43)

where C is an integration constant. Matching dϕ/dr at r = R yields

C = 8πG ξρR2∆R = 6ξGM
∆R

R
, (44)

where we have assumed that ∆R ≡ R − rs � R. Moreover, matching ϕ at r = R gives
(keeping only up to first order terms in ∆R)

ϕc ' ϕ∞ − 8πG ξρR∆R . (45)
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From (45), one gets

∆R

R
' ϕ∞ − ϕc

8πG ξρR2
=

ϕ∞ − ϕc
6ξGM/R

=
ϕ∞ − ϕc
6ξ|Φ?|

(46)

where we have used M = (4/3)πρR3 and Φ? = −GM/R. When the densities outside and
inside are very different, ϕc � ϕ∞ and ∆R/R ' ϕ∞/(6ξ|Φ?|). It is thus clear that the thin
shell approximation that we have assumed, i.e. ∆R� R, holds only if the condition

|Φ?| �
ϕ∞
6ξ

. (47)

is satisfied.
If the gravitational potential of the object is not sufficiently strong, then the screening is

inefficient because the scalar field does not manage to reach the minimum of its potential in
a large region inside the object.

3.3 Fifth force effects

The acceleration of a test particle is given by

~a = −~∇Φ− d lnA

dφ
~∇φ , (48)

where Φ is the Newtonian potential in the Einstein frame. This result can be derived as follows.
A test particle follows geodesics in the Jordan frame, which implies in the nonrelativistic limit

ẍi + Γ̃i00 = 0 . (49)

This can be rewritten as
ẍi + Γi00 = Γi00 − Γ̃i00 , (50)

which translates into

ẍi + ∂iΦ = −Aφ
A
∂iφ = −ξ∂iϕ , (51)

As a consequence, one can write

mtestẍ
i = −mtest∂

iΦ− qtest∂
iϕ , (52)

with
qtest = ξ mtest . (53)

A body of mass M generates a gravitational field,

Fg = −~∇Φ , Φ = −GNM

r
, (54)

as well as a scalar field, which in the simple case where ξ and V ′′(φ) = m2 are constant, is
given by1

Fφ = −ξ ~∇ϕ , ϕ = −ξM
M2

P

e−mr

4πr
= −2ξGNM

r
e−mr . (55)

1In this particular case, the scalar field equation reads ∆φ −m2φ = (ξ/MP )ρ̂ = (ξ/MP )Mδ(3)(~x), whose
solution is

φ = − ξM
MP

e−mr

4πr
.
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The yields the ratio
Fφ
Fg
' 2ξ2e−mr r . m−1 (56)

In the chameleon mechanism, we have found that, for an extended object where the thin
shell approximation is valid, the scalar field outside the object is given by

ϕ = −2ξεGNM

r
e−mr , (57)

with

ε = 3
∆R

R
� 1 , (58)

in contrast with the result (55) where ε = 1. This shows that the effective scalar charge of a
screened object, Q = ε ξM , is suppressed with respect to that of an unscreened object.

4 f (R) gravity

[See e.g. [28] and [6] for reviews]
One considers the Lagrangian

S =
M2

P

2

∫
d4x
√
−g [R + f(R)] + Smatter[ψm, gµν ] . (59)

Variation with respect to the metric yields:

(1 + fR)Rµν −
1

2
(R + f)gµν − [∇µ∇ν − gµν�]fR = M−2

P Tµν . (60)

The trace of this equation can be rewritten as an equation for the scalar fR, also called
scalaron,

�fR =
1

3

(
R + 2f − fRR +M−2

P T
)
≡ dVeff(fR)

dfR
. (61)

By taking the derivative of the right hand side, one obtains the effective mass

m2
eff(fR) =

1

3

(
1 + fR
fRR

−R
)
. (62)

4.1 Constraints on the function f

• In high curvature regions, fR ∼ 0 and |RfRR| � 1, hence m2
eff ' 1/(3fRR). The scalaron

is not a tachyon if
fRR > 0 (63)

in this regime.

• The graviton is not a ghost if we have everywhere

1 + fR > 0. (64)
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• Solar system constraints must be satisfied, which requires |fR| � 1 to evade fifth force
constraints. Typically, we must have

|fR| � 10−6 . (65)

• One would like to recover standard GR in the early universe:

f(R)

R
→ 0 and fR → 0 when R→∞ . (66)

Typical examples considered in the literature are the Hu-Sawicki model,

f(R) = − αM2

1 + (R/M2)−β
, α, β > 0 (67)

and the Starobinsky model

f(R) = αM2

[(
1 +

R2

M4

)−β/2
− 1

]
, α, β > 0 , (68)

which take the same form in the relevant cosmological regime R�M2:

f(R) ' αM2

[(
R

M2

)−β
− 1

]
(69)

In practice, in the high curvature regime, the function F (R) is of the form

F (R) ' R− 2Λ + |fR0|
R̄n+1

Rn
, (70)

where R̄ is the curvature today.

4.2 Equivalence with scalar-tensor theories

The f(R) theories can be rewritten as scalar-tensor theories. Indeed, the action

S =
M2

p

2

∫
d4x
√
−gF(R), (71)

is equivalent to the action

S =
M2

p

2

∫
d4x
√
−g [F(σ) + (R− σ)F ′(σ)] , (72)

as can be checked by varying the two actions. Defining χ = F ′(σ) and V = F(σ) − σF ′(σ),
one gets

S =
M2

p

2

∫
d4x
√
−g [χR− V (χ)] , (73)

where one recognises a JBD type theory with ωBD = 0 but with a potential. These theories
thus form a subclass of (1).
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By resorting to a conformal transformation, as well as a field redefinition,

g∗µν = e
√

2
3
φ
Mp , φ = −

√
3

2
MP lnF ′(σ) , (74)

one gets the Einstein frame action

S =

∫
d4x
√
−g∗

[
M2

P

2
R∗ −

1

2
gµν∗ ∂µφ∂νφ− V (φ)

]
+ Sm

[
ψm, A

2(φ)g∗µν
]
, (75)

with

A(φ) = exp

(
− 1√

6

φ

MP

)
. (76)

The potential associated with (69) is given by

V (φ) ≈ α

2
M2M2

P

1− (β + 1)

(√
2

3

φ

αβMP

) β
1+β

 , (77)

or, more simply, of the form

V = Λ− µ4

(
φ

MP

) n
n+1

. (78)

5 Horndeski and Vainshtein mechanism

5.1 Horndeski theories

One can try to construct scalar-tensor theories with second order derivatives in their La-
grangian, i.e. of the form

S[φ, gµν ] =

∫
d4x
√
−gL(φ,∇µφ,∇µ∇νφ; gµν) ≡

∫
d4xL (79)

The corresponding Euler-Lagrange equation for the scalar field is given by

∇µ∇ν

(
∂2L

∂∇µ∇νφ

)
−∇µ

(
∂L

∂∇µφ

)
+
∂L

∂φ
= 0 . (80)

This leads in general to fourth-order equations of motion.
However, there exists a family of Lagrangians, discovered by Horndeski in 1974, such that

the Euler-Lagrange equations for both the scalar field and the metric are second-order. These
Horndeski theories are described by Lagrangians obtained by combining four Lagrangians that
read, in modern notation,

LH2 [G2] ≡ G2(φ,X) , (81)

LH3 [G3] ≡ G3(φ,X)�φ , (82)

LH4 [G4] ≡ G4(φ,X) (4)R− 2G4X(φ,X)
[
(�φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
, (83)

LH5 [G5] ≡ G5(φ,X) (4)Gµν∇µ∇νφ+
1

3
G5X(φ,X)

[
(�φ)3

−3�φ (∇µ∇νφ)(∇µ∇νφ) + 2 (∇µ∇νφ)(∇σ∇νφ)(∇σ∇µφ)] . (84)
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where each of the Lagrangian depends on an abitrary function GA of φ and X ≡ ∇µφ∇µφ.
Horndeski’s paper was completely forgotten until 2011. In the meantime, the so-called

galileon theories had been introduced, motivated by considerations related to some braneworld
models [25]. In fact, galileons turn out to be a particular case of Horndeski’s theories when
the metric is Minkowski and the functions GA are given by

G3 ∝ X , G4 ∝ X2 , G5 ∝ X2 . (85)

Galileon theories enjoy a special symmetry, dubbed galileon symmetry, characterized by the
invariance under the transformation

φ(x) −→ φ(x) + c+ bµx
µ . (86)

By extending galileon theories and introducing a dynamical metric, Horndeski’s theories were
recovered [7, 18].

5.2 Vainshtein screening

5.2.1 Example: cubic galileon

Let us consider the example of the cubic galileon, described in the Einstein frame, by an
action of the form

S =

∫
d4x
√
−g
[
−k2(∂φ)2 − k3 (∂φ)2�φ

]
+ Sm

[
ψm, A

2(φ)gµν
]
≡ S =

∫
d4x
√
−gL+ Sm .

(87)
The equation of motion for the scalar field is given by

∇µJ
µ = −Aφ

A
T, (88)

with

Jµ ≡ − 1√
−g

δS

δ∂µφ
= ∇ν

(
∂L

∂φµν

)
− ∂L

∂φµ
= 2(k2 + k3�φ)∇µφ− 2k3(∇µ∇νφ)φν . (89)

The explicit equation of motion is given by

2k2�φ+ 2k3

[
(�φ)2 − φµνφµν

]
− 2k3Rµνφ

µφν = −α T

MP

. (90)

In a Minkowski background, assuming spherical symmetry, one gets

1

r2
∂r
(
r2Jr

)
= −α T

MP

=
α

MP

ρ(r) , Jr = 2k2φ
′ + 4k3

φ′2

r
. (91)

For a point-like source of mass M , the integration yields

2k2φ
′ + 4k3

φ′2

r
=

αM

4πr2MP

, (92)

giving the solution

φ′ = −k2r

4k3

[
1±

√
1 +

k3αM

k2
2MPπr3

]
. (93)
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Defining the Vainshtein radius2

rV ≡
(
k3αM

k2
2MPπ

)1/3

, (94)

one can write the appropriate solution (with φ′ going to zero at infinity):

φ′ = −k2r

4k3

[
1−

√
1 +

r3
V

r3

]
. (95)

One can identify two regimes:

1. the linear regime r � rV :

φ′ ' k2

8k3

r3
V

r2
(96)

2. the Vainshtein regime r � rV

φ′ ' k2

4k3

r
3/2
V

r1/2
(97)

This implies

Fφ
Fg
' α2

k2

(r � rV ) ,
Fφ
Fg
' 2

α2

k2

(
r

rV

)3/2

(r � rV ) . (98)

See [5] for a review on the laboratory tests of Vainshtein screening (in particular using
Casimir force experiments).

5.2.2 More general case: Horndeski theories

One can also consider the Vainshtein mechanism at the level of linear perturbations in the
context of Horndeski theories [16, 20].

6 DHOST theories

See [22] for a recent short review (with the relevant references).

6.1 Higher-order scalar-tensor theories

We now consider scalar-tensor theories whose action depends not only on φ and its gradient
φµ ≡ ∇µφ as usual, but also on its second derivatives φµν ≡ ∇µ∇νφ. Restricting ourselves to
the cubic order in φµν up to cubic order, we are interested by actions of the form

S[g, φ] =

∫
d4x
√
−g
[
f0(X,φ) + f1(X,φ)�φ+ f2(X,φ)R + Cµνρσ

(2) φµν φρσ+

+f3(X,φ)Gµνφ
µν + Cµνρσαβ

(3) φµν φρσ φαβ

]
, (99)

2In DGP, we have r2c ≡ 2k3
αMP

. To get rc ∼ H−1
0 , the Vainshtein radius is rV ∼ 130 pc.
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where the functions fi depend only on φ and X ≡ φµφ
µ.

The tensors C(2) and C(3) being the most general tensors constructed with the metric gµν
and the scalar field gradient φµ, it is easy to see that the terms quadratic in φµν can be
rewritten as

Cµνρσ
(2) φµν φρσ =

5∑
A=1

aA(X,φ)L
(2)
A , (100)

with

L
(2)
1 = φµνφ

µν , L
(2)
2 = (�φ)2 , L

(2)
3 = (�φ)φµφµνφ

ν ,

L
(2)
4 = φµφµρφ

ρνφν , L
(2)
5 = (φµφµνφ

ν)2 ,
(101)

where the aA are five arbitrary functions of X and φ. Similarly, the cubic terms can be written
in terms of ten arbitrary functions bA, as

Cµνρσαβ
(3) φµν φρσ φαβ =

10∑
A=1

bA(X,φ)L
(3)
A , (102)

where

L
(3)
1 = (�φ)3 , L

(3)
2 = (�φ)φµνφ

µν , L
(3)
3 = φµνφ

νρφµρ , L
(3)
4 = (�φ)2 φµφ

µνφν ,

L
(3)
5 = �φφµφ

µνφνρφ
ρ , L

(3)
6 = φµνφ

µνφρφ
ρσφσ , L

(3)
7 = φµφ

µνφνρφ
ρσφσ ,

L
(3)
8 = φµφ

µνφνρφ
ρ φσφ

σλφλ , L
(3)
9 = �φ (φµφ

µνφν)
2 , L

(3)
10 = (φµφ

µνφν)
3 .

(103)

6.2 Horndeski and Beyond Horndeski theories

The general action (99) includes in particular Horndeski theories. The quadratic part of the
Horndeski action, is fully determined by the function f2 = G4, with the quadratic coefficient
aA given by

a1 = −a2 = 2f2,X , a3 = a4 = a5 = 0 . (104)

Similarly, the cubic part of Horndeski theories, depends only on the functions f3 = G5, while

3b1 = −b2 =
3

2
b3 = f3,X , bA = 0 (A = 4, . . . , 10) . (105)

The so-called Beyond Horndeski (or GLPV) theories, introduced in [9], extend Horndeski
theories by including two additional Lagrangians, each characterized by a single arbitrary
function. The first of these Lagrangians, which can be written as LbH

(2)[g2], is quadratic and
characterized by the coefficients

a1 = −a2 = Xg2 , a3 = −a4 = 2g2 , a5 = 0 . (106)

The second new Lagrangian, which is cubic and will be denoted LbH
(3)[g3], depends on a single

arbitrary function g3 and its non vanishing coefficients bA are given by

b1

X
= − b2

3X
=

b3

2X
= −b4

3
=
b5

6
=
b6

3
= −b7

6
= g3 . (107)
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6.3 Degenerate Higher-order scalar-tensor (DHOST) theories

The crucial element that characterizes higher-order theories with a single scalar degree of
freedom is the degeneracy of their Lagrangian, hence their name DHOST.

DHOST theories include seven subclasses of quadratic theories (four classes with f2 6= 0
and three classes with f2 = 0) and nine subclasses of cubic theories (two with f3 6= 0 and seven
with f3 = 0). These quadratic and cubic subclasses can be combined to yield degenerate hybrid
theories, involving both quadratic and cubic terms, but all combinations are not possible: only
25 combinations (out of 63) lead to degenerate theories, often with extra conditions on the
functions aA and bA in the Lagrangian (see [1] for details and for the explicit form of the
functions in each subclass).

A legitimate question about this classification is whether seemingly different DHOST theo-
ries could correspond the same theory in different guises, in other words whether some theories
could be identified via field redefinitions 3. Since the Lagrangian depends on a metric and on
a scalar field, natural field redefinitions of the metric involve disformal transformations

g̃µν = C(X,φ)gµν +D(X,φ)φµ φν . (108)

Via this transformation, any action S̃ given as a functional of g̃µν and φ induces a new action
S for gµν and φ, when one substitutes the above expression for g̃µν in S̃:

S[φ, gµν ] ≡ S̃ [φ, g̃µν = C gµν +Dφµφν ] . (109)

The actions S and S̃ are then said to be related by the disformal transformation (108).
Interestingly, there is a nice correspondence between the type of disformal transformations

and the extent of the corresponding stable class of theories:

• Horndeski theories are stable under disformal transformations characterized by C(φ) and
D(φ), i.e. conformal and disformal factors that depend only on φ, but not on X.

• Beyond Horndeski theories are stable under disformal transformations characterized by
C(φ) and D(φ,X).

• Finally, DHOST theories are stable under the most general disformal transformations
where C and D depend on both φ and X.

6.4 Beyond Horndeski: breaking of Vainshtein mechanism

In Beyond Horndeski theories, one finds a partial breaking of Vainshtein mechanism inside
astrophysical bodies so that the equations of motion for the weak-field metric potentials defined
by

ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ) δijdx
idxj (110)

are modified to [17, 21, 26, 27]

dΦ

dr
=
GNM(r)

r2
+

Υ1GN

4

d2M(r)

dr2
(111)

dΨ

dr
=
GNM(r)

r2
− 5Υ2GN

4r

dM(r)

dr
. (112)

3The coupling to matter is ignored here. If, after a redefinition of the metric, two related theories are
minimally coupled to matter, then they are physically distinct.
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The dimensionless parameters Υi characterise deviations from GR of the beyond Horndeski
type. They are directly related to the parameters appearing in the effective description of dark
energy (see next section) that controls the linear cosmology of beyond Horndeski theories:

Υ1 =
4α2

H

c2
T (1 + αB)− αH − 1

and

Υ2 =
4αH(αH − αB)

5(c2
T (1 + αB)− αH − 1)

. (113)

7 Cosmology

7.1 Effective description of Dark Energy and Modified Gravity

In order to study the cosmology of DHOST theories, it is very convenient to resort to the
unified formalism that has been developed for an effective description of Dark Energy and
Modified Gravity (see e.g. [10] for a review).

This approach is based on a 3 + 1 decomposition of spacetime,

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (114)

in which the spatial slices coincide with uniform scalar field hypersurfaces. In this particular
gauge, sometimes called unitary gauge, the action of DHOST theories is of the form

S =

∫
d3x dtN

√
hL[N,Kij,

3Rij; t] , (115)

where N is the lapse function which appears in the 3 + 1 form of the spacetime metric ; Kij

is the extrinsic curvature tensor and 3Rij the intrinsic curvature tensor.
The Friedmann equations associated with a spatially flat Friedmann-Lemâıtre-Robertson-

Walker (FLRW) spacetime,

ds2 = −N̄2(t)dt2 + a2(t)δijdx
idxj , (116)

are then simply derived from the homogeneous action

Shomog =

∫
dtNa3L[N = N̄(t), Ki

j =
ȧ

N̄a
δij,

3Rij = 0; t] . (117)

To study the dynamics of linear perturbations, one needs to write down the action at quadratic
order in perturbations. These perturbations are associated with the three basic ingredients of
the action:

δN ≡ N − N̄ , δKi
j = Ki

j −Hδij , δ 3Ri
j = 3Ri

j , (118)

where H = ȧ/(N̄a) is the Hubble parameter, and 3Ri
j is already a perturbation since it vanishes

in the background. The Lagrangian at quadratic order is then obtained via a Taylor expansion,
which is formally written as

L(qA) = L̄+
∂L

∂qA
δqA +

1

2

∂2L

∂qA∂qB
δqAδqB + . . . . (119)

where qA = {N,Ki
j,

3Ri
j}.
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All (quadratic and cubic) DHOST theories lead to a Lagrangian quadratic in linear per-
turbations of the form [23]

Squad =

∫
d3x dt a3M

2

2

{
δKijδK

ij −
(

1 +
2

3
αL

)
δK2 + (1 + αT)

(
3R
δ
√
h

a3
+ δ2

3R

)
+H2αKδN

2

+4HαBδKδN + (1 + αH) 3RδN + 4β1δKδṄ + β2δṄ
2

+
β3

a2
(∂iδN)2

}
, (120)

where δ2
3R denotes the second order term in the perturbative expansion of 3R, where the

parameters M , αL, αT, αK, αB, αH, β1, β2 and β3 are time-dependent functions4. Moreover,
one finds that these parameters, for DHOST theories, are restricted to satisfy either one of
the following sets of conditions:

CI : αL = 0 , β2 = −6β2
1 , β3 = −2β1 [2(1 + αH) + β1(1 + αT)] , (121)

or

CII : β1 = −(1 + αL)
1 + αH

1 + αT

, β2 = −6(1 + αL)
(1 + αH)2

(1 + αT)2
, β3 = 2

(1 + αH)2

1 + αT

. (122)

The category CI contains the subclass of Horndeski theories and of those related to Horndeski
via disformal transformations.

From the action (120), one can isolate the physical degrees of freedom, which reduce to
one scalar and two tensor modes for DHOST. Their action is given by [23]

Squad,phys =

∫
d3x dt a3

{
M2

2

[
A ˙̃ζ2 −B (∂ζ̃)2

a2

]
+
M2

8

[
γ̇2
ij −

1 + αT

a2
(∂kγij)

2

]}
, (123)

where ζ̃ ≡ ζ−β1δN , ζ being the usual curvature perturbation of the spatial part of the metric
and hij denotes the transverse-traceless perturbation of the metric. The explicit expressions
for the coefficients A and B can be found in [23]. In particular, for models in the category CII,
one finds that B = −(1 + αT). Comparing with the tensor part, one sees that the coefficients
of the gradient terms for the scalar and tensor modes have opposite signs and therefore, these
modes cannot be stable simultaneously. This signals an instability for theories satisfying CII.
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